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In order to get a ''feel' for the requirements on the fields in the
main ring rriagnets, I have estimated the radial shifts resulting from
errors in the magnetic field shape for several cases. For the quadrupoles,
I have assumed that all effects are due to the errors in the horizontally
focusing quadrupoles. I then solve approximately the equation
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~and L length of a horizontally focusing quadrupole

Lg = length of a bending magnet

R = the machine radius (1000 m)
B, = the field in a bending magnet
Yo ° the design betatron frequency

c@l is an error term coefficient from the expansion of the magnetic scalar
potential in the quadrupole

Vm=Zc{7n r’ sin n ©
The symmetry of the quadrupole causes all odd terms to vanish. The
n=2 term gives the quadrupole field, so that the n=4 term (octupole) is
the lowest error term. (This would vanish if the quadrupoles had true
quadrupole symmetry.) The approximate formula for the v/ shift is
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where X, is the oscillation amplitude at /—77
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For the bending magnets, one solves the same equation, except

that the definition of & is somewhat different,

C>L=—I]§—;n0ﬁn

and the symmetry in this case causes all of the eventerms in the
expansion to vanish. Cpl = B, so that the first error term is the
sextupole, n=3. The magnet calculations show that there is negligible
sextupole error at fields up to 18, 000 gauss, and the remaining errors
look like decapole, n=5. If there is no momentum error, the first
order effect of the field error vanishes and the 1/ shift is a second order

effect.
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To allow for the variation of amplitude with azimuth, the above result

should be multiplied by

ﬂ n-2
 max

The )/ shifts calculated from this turn out to be very small. On the

AV

other hand, if there is a systematic radial displacement, J , due to
momentum error, there results an error term in the differential equation

of the form

o (x+ §) = oLt LS o+
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The first term in the expansion gives the second order 7) shift
described above. The second term is the one of interest, because

it is of opposite parity and therefore gives a first order shift

) nmh+1) R n-3
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Again, this should be multiplied by (ﬁﬂ_m_m;)—z—
AV
to take into account the variation of amplitude with azimuth.

A few numerical examples will give some meaning to the magnitudes
involved. In order to properly understand the results, it is worth noting
that the extracted protons make three turns between the time they just
clear the septum with x, = 3 cm, and the time they pass through the
channel. Since a 30° phase change of the oscillation is sufficient to
arrest the growth, the corresponding (average) S)shift of 0. 028 would

be a total disaster. In fact, for good extraction, we should allow less

than half this value.

Quadrupole --- KASE 2630 (at 400 BeV)
AL
n o_,fn (k;-‘*“) Xo = 3 cm Xo = 4 cm
4 1.55x 1072 +.025 + . 045
6 -1 01x10° - . 020 - . 062

8 4.24 x 1077 +.009 + . 052
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Dipole --- KASE 5122 (at 400 BeV)

n=>5 CP5N2.8 x 1073 Gausy - e

Ny

X, = 3 cm X, = 4 cm
Second Order 6.4 x 1079 3.6 x 1074
First Order (§ = 0.25 cm) ..0077 .014

It is clear that the quadrupole must be considerably improved. The
first order effect due to momentum error could be largely eliminated by
an adjustment of the bending magnet fields during the spill to keep the
orbits directly leading to extraction centered. However this effect
could cause a modulation of the spill due to ripple on the bending magnet

current, so that the bending magnet errors must be minimized.



